X-Ray Production, Tubes and Generators

The kinetic energy gained by an electron is proportional to the potential difference between the cathode (negative) and the anode (positive charge).

Bresstrahlung radiation – arises from electron interactions with the atomic nucleus of the target material. The x-ray energy depends on the interaction distance between the electon and the nucleus, it decreases as the distance increases.

The major factors that effect x-ray production efficiency are the atomic number (Z) of the target material and the kinetic energy (E_k) of the incident electrons. Radiative energy loss/Collisional energy loss = $E_k Z/820,000$

Characteristic x-ray specturm –

- Electron binding energy decreases as you move away from the nucleus
- Electron shell binding energies are unique to a given element, so emitted x-rays have discrete energies that are characteristic of that element.
- For tungsten, an L-shell electron filling a K-shell vacancy results in a characteristic x-ray energy:

$$E_{K-shell} - E_{L-shell} = 69.5 \text{ keV} - 10.2 \text{ keV} = 59.3 \text{ keV}$$

• Characteristic x-rays are emitted only when the electrons impinging on the target exceed teh binding energy of a K-shell electron.

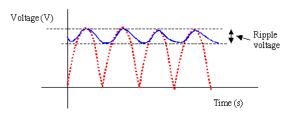
Standard voltage in wall plug = 120/240V. To make x-rays, you need 20,000 - 150,000V.

$$120V \rightarrow (step-up\ transformer) \rightarrow 20,000V$$

Transformers use *electromagnetic induction*, based on coils of wire.

An *autotransformer* is a special transformer that lets you choose your output voltage, and this is what the machine uses to change your kVp.

X-ray generators use DC as opposed to AC current, so the AC input has to be rectified with a *rectifier circuit*. This makes the sine wave into a series of humps.


Modern machines use *3-phase* input, which is 3 series of voltage humps, each displaced from the others, which are added together to create a more uniform voltage/current.

Timing exposure of x-rays is done by simple stopwatch-like timers (old-school) to fancy *phototimers* which measure x-rays to a pre-determined density (with backup old school timer in case of failure).

Voltage Ripple and Root-Mean-Square Voltage:

- % Voltage Ripple (VR) = $(V_{max}-V_{min})/V_{max} \times 100\%$
- Root-Mean-Square Voltage (V_{rms}): The constant voltage that would deliver the same power as the time-varying voltage waveform

• As %VR $\mathbf{\Psi}$, the V_{rms} $\mathbf{\uparrow}$

Operator Console:

- Tech selects peak kilovolts (kVp), current (mA), exposure time (sec) and focal spot size
- kVP determines x-ray beam quality (penetrability) which plays role in subject contrast
- mA determines x-ray fluence rate (photons/cm²-sec) emitted by x-ray tube at a given kVp (mAs = mA x sec which is proportionate to photons/cm² or fluence)
- Low mA selections allow small focal spot while higher mA settings require large focal spot size

Phototimers:

- Although a tech can manually time the x-ray exposure, phototimers help provide a consistent exposure to the image receptor
- Ionization chambers produce a current that induces a voltage difference in an electronic circuit
- Tech chooses kVp; the x-ray tube current terminates when induced voltage = reference voltage

Factors Affecting X-ray Emission:

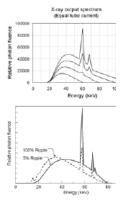
Quantity = # of x-rays in beam Proportionate to $Z_{target} x (kVp)^2 x mAs$

Quality = penetrability of x-ray beam and depends on:

- kVp
- Generator waveform (%VR)
- Tube filtration (mm AI)

Exposure depends on both quantity and quality Changes in kVp can be compensated by changes in mAs to maintain the same exposure

Quality and Quantity


Change from 60 kVp to 80 kVp:

$$\left(\frac{kVp_2}{kVp_1}\right)^2 = \left(\frac{80}{60}\right)^2 \cong 1.78$$

 Adjust the technique to maintain the same exposure (i.e. dose) as the original technique (60 kVp, 40 mAs):

$$\left(\frac{\text{kVp}_2}{\text{kVp}_1}\right)^5 \cdot \text{mAs}_1 = \left(\frac{80 \text{ kVp}}{60 \text{ kVp}}\right)^2 \cdot 40 \text{ mAs} \cong 9.5 \text{ mAs}$$

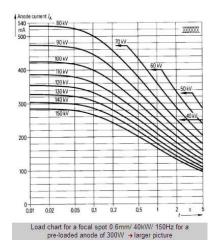
 $kVp_1^5 \cdot mAs_1 = kVp_2^5 \cdot mAs_2$

TABLE 5-6.	X-RAY	TUBE FO	OCAL SPOT
SIZE AND T	YPICAL	POWER	RRATING

Nominal X-ray Tube Focal Spot Size (mm)	Typical Power Rating (kW)	
1.2–1.5	80-125	
0.8-1.0	50-80	
0.5-0.8	40-60	
0.3-0.5	10-30	
0.1-0.3	1-10	
<0.1 (micro-focus tube)	-1	

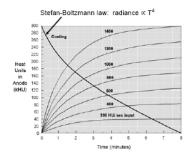
Power Ratings and X-ray Tube Focal Spots:

- Describes the energy per unit time that the generator can supply
- Power (kW) = 100 kVp x A_{max} (for a 0.1 second exposure)
 - o 100 kW = 100 kVp x 1000 mA @ 100 ms exposure
 - o A_{max} (tube current) limited by the focal spot: \uparrow focal spot $\rightarrow \uparrow$ power rating
- Generally range = 10 kW to 150 kW
- Typical focal spots:

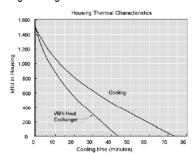

o Radiography: 0.6 and 1.2 mm o Mammography: 0.1 and 0.1 mm

X-ray Tube Heat Loading:

- Energy deposition on anode (during x-ray production, 99% heat production)
- Heat Unit (HU) = kVp x mAs x factor (factor = 1.0 for 1-phase generator, 1.35 for 3-phase & HF generators, 1.4 for CP generator)
- Energy (J) = V_{rms} x mA x sec (V_{rms} = 0.71 for 1-phase, 0.95-0.99 for 3-phase & HF and 1.0 for CP)
- Heat Input (HU) ~ 1.4 x Heat input (J)


Exposure Rating Charts:

- Determine operational limits and permissible heat load of anode and tube housing
- Charts show the limitation and safe techniques for operation of the system
- Parameters affecting rating charts include focal spot size, anode rotation speed, anode angle, anode diameter and generator type (1-phase, 3-phase, HF)



Sample Exposure Rating Chart

Anode Heat Input and Cooling Chart

Housing Cooling Chart

^{*} Sources include lecture slides at http://courses.washington.edu/radxphys/PhysicsCourse.html, Bushberg et al, The Essential Physics of Medical Imaging, http://www.antonine-education.co.uk/Physics_A2/options/Module_9/Topic_3/ripple_10.gif and http://www.antonine-education.co.uk/Physics_A2/options/Module_9/Topic_3/ripple_10.gif and <a href="http://www.antonine-education.co.uk/Physics_A2/options/Module_9/Topic_3/ripple_10.gif and http://www.antonine-education.co.uk/Physics_A2/options/Module_9/Topic_3/ripple_10.gif and http://www.antonine-education.co.uk/Physics_A2/options/Module_9/Topic_3/ripple_10.gif and <a href="http://www.antonine-education.co.uk/Physics_A2/options/module_9/Topic_3/ripple_10.gif and <a href="http://www.antonine-education.co.uk/Physics_A2/options/module_9/Topic_3/ripple_9/Topic_3/ripple_9/Topic_3/ripple_9/Topic_9/Topic_9/Topic_9/Topic_9/Topic_9/Topic_9/Topic_9/Topic_9/Topic_9/Topic_9/Topic_9/Topic_9/Topic_9/Topic_9/T